LE M®NDE DE L'OTOLOGIE

n° 22 - Septembre 2025

ISSN: 2778-II94

Rédaction en chef: Pr Alexis Bozorg Grayeli, Service ORL, CHU Dijon et laboratoire CNRS ICMUB, Université Bourgogne Franche-Comté

Intelligence artificielle basée sur des organoïdes de cerveau humain : le projet "Dishbrain"

ÉDITO

L'intelligence artificielle (IA) envahit le quotidien à une vitesse exponentielle et confronte la population mondiale à de nouveaux défis comme la pollution informationnelle, le manque de ressources minières et d'énergie (1).

Les cartes graphiques (GPU) qui soutiennent cette activité sont gourmandes en électricité pour leur fonctionnement et leur refroidissement. L'utilisation d'un réseau mondial et le stockage des données sont les deux autres postes énergivores. Selon le rapport "Shift Project", l'IA représente aujourd'hui 1 % de l'empreinte carbone à l'échelle mondiale (2). Une requête adressée à l'IA ferait dépenser près de dix fois plus d'énergie qu'un moteur de recherche simple sur Internet. Or, de plus en plus de requêtes simples de type « Quelle est la capitale de la France? » sont adressées aux plateformes d'IA et la demande augmente de manière exponentielle. Les sociétés fournisseurs de ce service se trouvent déjà face à une limitation des ressources énergétiques dans tous les pays. Aux États-Unis, Google a annoncé le financement de trois futures centrales nucléaires pour répondre à cette demande accrue d'énergie (3).

La croissance de la consommation accélère de manière plus fulgurante en Chine et aux États-Unis. Ces deux pays représentaient 80 % de cette croissance jusqu'en 2030. Par rapport à 2024, la consommation a augmenté de 240 TWh (+130 %) aux États-Unis. En Chine, cette croissance est de 170 %. L'Europe (+80 %) et le Japon (+70 %) partagent la troisième marche du podium ⁽⁴⁾. Ainsi, l'énergie constituerait une limite au développement de l'IA à moyen terme et semble une barrière infranchissable pour obtenir des systèmes complexes appelés « super-IA » dépassant l'intelligence humaine ⁽⁵⁾.

L'autre limitation du progrès de l'IA est le nombre de transistors contenus dans chaque carte graphique. Leur densité ne peut augmenter indéfiniment car on approche la finesse de gravure la plus élevée possible. Par conséquent, on réfléchit à des gravures en 3D ⁽⁶⁾. En revanche, la densité des unités fonctionnelles (neurones) peut être bien supérieure à un circuit graphique ⁽⁵⁾.

De ce constat est né le concept d'informatique biologique (biological computing) fusionnant les outils biologiques et informatiques (7). Dans ce domaine, une des approches est le développement d'un organoïde cérébral humain placé sur un circuit électrique imprimé reliant les différentes régions de l'organoïde à des capteurs et des actionneurs (8). Le tissu cérébral a plusieurs avantages théoriques sur le GPU. Avec ses 10¹¹ neurones, il ne consomme que 12 W contre 150 W pour un simple ordinateur portable et 440 kW pour un superordinateur qui simule un cerveau de souris (5). De plus, la distinction entre logiciel et matériel ne se fait pas dans le cerveau car la plasticité neuronale permet de changer les connexions avec l'entraînement. Enfin, au lieu de penser à des opérations en série ou en parallèle dans un ordinateur, le processus de traitement des informations est protéiforme et peut changer en fonction des besoins et des stratégies (7).

En 2023, les résultats prometteurs d'un projet basé sur ce principe et appelé Dishbrain ont été publiés dans le prestigieux journal *Neuron* (8). Les chercheurs australiens ont démontré qu'après entraînement, un organoïde de cerveau humain *in vitro* peut jouer à un jeu vidéo simple: Pong. L'organoïde est subdivisé en trois secteurs (un sensoriel et deux moteurs) connectés au monde extérieur

par des bornes électriques. Il peut être entraîné à jouer à Pong grâce au principe général d'énergie libre dans le cerveau (9). Les structures adaptatives du cerveau tendent à minimiser les différents états de leurs activités et donc évitent les « surprises » dans leurs échanges avec le monde extérieur. Chaque action (mouvement de raquette dans le jeu de Pong) qui n'aboutit pas au résultat souhaité (contact avec la balle) est suivie d'une décharge irrégulière alors que les actions réussies sont récompensées par des décharges synchrones. De cette manière, les structures adaptatives de l'organoïde cherchent à toucher la balle pour éviter les décharges erratiques.

Cette étude a été une preuve de concept et il n'en fallait pas plus pour que plusieurs industriels de la biotech se lancent dans le développement et la commercialisation d'organoïdes cérébraux humains pour tout type de projet de recherche.

La société Cortical Labs (corticallabs.com, Melbourne, Australie) avec le slogan "Think beyond silicon" (penser au-delà du silicium) commercialise des organoïdes du cerveau humain. Chaque unité est une boîte permettant le maintien en vie de l'organoïde (oxygène, nutriments, température), munie d'une interface électrique pour toutes sortes d'expériences et innovations. L'unité est commercialisée depuis cette année sous le nom CL1 pour la somme de 35 000 dollars. Une autre société basée en Suisse (Final Spark, finalspark.com, Vevey)

propose un service similaire mais en ligne. Cette société entretient dans ses locaux seize organoïdes du cerveau humain connectés également vers l'extérieur et disponibles pour des expériences dans tous les domaines. Le service est commercialisé en ligne et les utilisateurs se connectent à ces « mini-cerveaux » via Internet pour télé-expérimenter.

Aujourd'hui, cette recherche en est à ses débuts et il existe plus de questions que de réponses. On testera probablement des algorithmes plus complexes sur des organoïdes plus importants dans un futur proche mais il faudra encore plusieurs années avant de remplacer les GPU par ces organoïdes pour les tâches d'IA. Les applications médicales potentielles peuvent être dans le domaine des maladies dégénératives et du vieillissement cérébral avec l'idée de recruter et d'activer des régions cérébrales moins atteintes.

Enfin, cette recherche pose également des questions éthiques (10). Si l'on obtient des organoïdes de plus en plus complexes, développeront-ils une conscience ? Peuvent-ils ressentir une souffrance ? Et dans ce cas, aurait-on le droit de les détruire ou d'arrêter de les nourrir ?

Pr Alexis Bozorg Grayeli, service d'ORL, CHU de Dijon et ICMUB, CNRS, Université Bourgogne-Europe alexis.bozorggrayeli@chu-dijon.fr

Références I

- 1. Broca S. Mesurer la gloutonnerie numérique. Le Monde diplomatique, juillet 2025
- 2. The Shift Project. Intelligence artificielle, données, calculs. Rapport intermédiaire mars 2025. https://theshiftproject.org/publications/intelligence-artificielle/. Dernier accès 16 août 2025.
- 3. Herzlich T. Google to back development of 3 nuclear sites to 'move at speed required' for Al, American innovation. *New York Post*. May 7, 2025.
- 4. Rapport de l'Agence internationale pour l'énergie : Energy demand from Al. https://www.iea.org/reports/energy-and-ai/energy-demand-from-ai. Dernier accès 16 août 2025
- 5. Stiefel KM, Coggan JS. The Energy Challenges of Artificial Superintelligence. Front Artif Intell. 2023;6:1240653.
- 6. Francis Bus FF. L'Époque où les puces font leurs lois : histoire des semiconducteurs vécue chez Texas Instruments. Books On Demand, 2020 (ISBN 2-322-25685-4 et 978-2-322-25685-3).
- 7. Qiu X, Zhu L, Wang H, Xie M. Biocomputing at the Crossroad between Emulating Artificial Intelligence and Cellular Supremacy. *Curr Opin Biotechnol.* 2025;92:103264.
- 8. Kagan BJ, Kitchen AC, Tran NT, *et al.* In Vitro Neurons Learn and Exhibit Sentience when Embodied in a Simulated Game-World. *Neuron.* 2022;110:3952-69.e8.
- 9. Friston K. The Free-Energy Principle: a Unified Brain Theory? Nat Rev Neurosci. 2010;11:127-38.
- 10. Milford SR, Shaw D, Starke G. Playing Brains: The Ethical Challenges Posed by Silicon Sentience and Hybrid Intelligence in DishBrain. *Sci Eng Ethics.* 2023;29:38.

MISE AU POINT

Intérêt de l'étude des réponses électrophysiologiques auditives corticales

Elsa Legris¹, PhD; Dr Fabrice Micaletti²; Dr David Bakhos^{2,3}

- ¹ Audioprothésiste, 76450 Cany-Barville
- ² Service ORL et CCF, CHU de Tours, 37000 Tours
- ³ Inserm 1253, iBrain, Université de Tours ; House Institute Foundation, 2100 W 3rd Street, Suite III, Los Angeles, CA 90057, USA

Introduction

Les potentiels évoqués auditifs corticaux (PEAC) sont des mesures électrophysiologiques permettant d'explorer le fonctionnement du cortex auditif en réponse à une stimulation auditive ⁽¹⁾.

Contrairement aux potentiels évoqués auditifs précoces, les PEAC révèlent l'activité neuronale à des temps supérieurs à 50 ms après la stimulation auditive (1), reflétant un traitement cortical de l'information auditive. L'étude de ces réponses auditives corticales donne accès à des données précieuses sur les mécanismes physiologiques concernant le traitement des informations auditives au niveau cortical. Ils permettent d'étudier les mécanismes patho-physiologiques consécutifs à une privation auditive

et les mécanismes de réorganisation cérébrale suite à une réhabilitation de la fonction auditive, notamment par des prothèses auditives ou des implants cochléaires.

Bases physiologiques et techniques des PEAC

Les PEAC sont extraits d'un enregistrement électroencéphalogramme (EEG) classique. Des électrodes de surface, placées sur le cuir chevelu selon le système international 10-20, permettent d'enregistrer les réponses provoquées par un stimulus sonore. Pour recueillir un signal de bonne qualité, l'événement sonore (comme une syllabe ou une bouffée tonale) est présenté de manière répétée, et les segments EEG temporellement synchrones sont moyennés,

permettant une résolution temporelle fine. On enregistre la différence de potentiel entre les électrodes placées sur le scalp (électrodes dites actives) et une électrode de référence. L'électrode de référence est généralement placée sur le nez, afin d'étudier les générateurs temporaux, et pour respecter la latéralité des réponses enregistrées. L'EEG de surface se présente sous la forme d'un ensemble de série temporelle (autant que d'électrodes) de variation de potentiels, montrant continuellement l'activité des générateurs cérébraux. Il reflète l'activité neuronale globale spontanée dans les différentes aires corticales. Les différentes étapes permettant le recueil de ces réponses électrophysiologiques sont résumées sur la *Figure n° 1*. Il s'agit de la présentation des stimuli, du séquençage de l'EEG, puis du moyennage pour

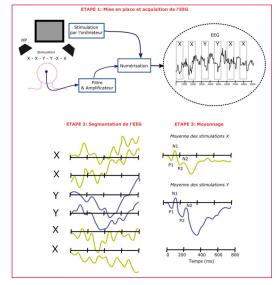


Figure n°1 | Exemple d'une expérience en EEG. Le sujet entend des stimulations « X » et « Y » par des haut-parleurs (HP), pendant l'enregistrement de l'EEG (étape 1). L'EEG est ensuite segmenté en fonction des stimulations testées (étape 2), puis un moyennage est réalisé (étape 3).

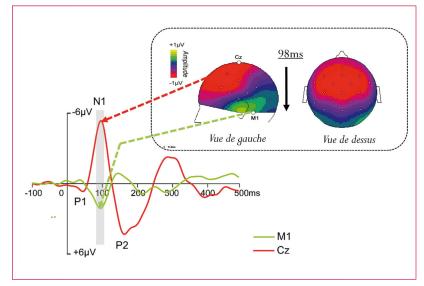


Figure n° 2 | Moyenne d'un potentiel évoqué enregistré en Cz (réponses en rouge) et M1 (réponses en vert) chez huit sujets adultes normo-entendants avec une bouffée tonale émise à 70 dB SPL. En abscisse, le temps en milliseconde (ms), et en ordonnée l'amplitude en microvolt (µV). On observe les ondes P1, N1, P2 et N2. La négativité se trouve en haut. En haut, la cartographie de champ de potentiel enregistrée pour l'onde N1 à 98 ms.

4

isoler les différentes ondes recueillies du bruit du fond.

Des casques, composés de 32 à 512 électrodes, placées à des points spécifiques du scalp, sont disponibles pour améliorer la résolution spatiale.

Réponses auditives centrales chez le sujet normo-entendant

Les principales ondes enregistrées sont les réponses fronto-centrales et les réponses temporales (1).

Réponses fronto-centrales (Figure n° 2)

À la suite d'une stimulation auditive, les réponses enregistrées au vertex (Cz) sont caractérisées successivement par une onde positive (P1, latence : 60-80 ms), suivie d'une onde négative (N1, latence 90-100 ms), puis d'une seconde onde positive (P2, latence 100-160 ms), et d'une dernière onde négative (N2, latence : 180-200 ms).

L'onde P1 présente des générateurs situés dans le gyrus temporal supérieur. Elle permettrait de refléter le traitement perceptuel précoce des caractéristiques acoustiques du signal et a un intérêt pour suivre la maturation du cortex auditif.

L'onde N1 a son générateur localisé dans le gyrus temporal supérieur. Il s'agit de l'onde la plus étudiée chez l'adulte. Sa topographie est caractérisée par un champ de potentiel négatif dans les aires fronto-centrales du scalp, et une inversion de polarité avec un champ positif autour des mastoïdes.

L'onde P2 a son générateur situé dans la fissure sylvienne du cortex auditif primaire. Elle représenterait un codage plus fin de l'information auditive comme un signal vocal ou non vocal.

L'onde N2 présente son générateur dans le cortex supra temporal et refléterait l'activité corticale impliquée dans le traitement des stimuli langagiers (1, 2).

Réponses temporales

Dans les aires temporales postérieures, l'activité est décrite par le complexe T composé de trois ondes (deux pics négatifs Na et Tb, et un pic positif Ta). Le complexe T est localisé par le cortex auditif secondaire. Ces réponses temporales sont prédominantes chez l'enfant. Il a été montré des réponses anormales de ce complexe T ([Ta-Tb]) chez des enfants atteints de troubles du langage oral avec une surdité neurosensorielle moyenne (3), un syndrome de Down (4), ou atteints d'un autisme (5), suggérant que des sources sous-jacentes puissent jouer un rôle dans le développement et le traitement du langage oral.

Paramètres influençant la morphologie des PEAC

Plusieurs paramètres peuvent influencer la morphologie des ondes enregistrées lors de la réalisation des PEAC ⁽¹⁾. Il s'agit principalement:

• Du type de stimulus auditif utilisé

Les potentiels évoqués peuvent être enregistrés en réponse à des bouffées tonales ou à des stimuli vocaux. L'utilisation d'un stimulus vocal chez des enfants normo-entendants a permis d'identifier une réponse spécifique à la voix humaine intitulée Fronto-Temporal Voice Positivity (6). Une onde spécifique à la voix humaine a aussi été mise en évidence chez des enfants implantés cochléaires avec des phénomènes de réorganisation corticale comparés aux enfants normo-entendants (7).

• De l'intensité de la stimulation auditive

Lorsque l'on augmente l'intensité de la stimulation, une augmentation de l'amplitude peut être observée ainsi qu'une diminution de la latence. Ces effets ont également pu être notés chez des sujets avec et sans leurs audioprothèses (8) ou pour des sujets implantés cochléaires (9).

• De l'intervalle inter-stimuli (IIS)

Une diminution de l'IIS engendre une augmentation de l'amplitude des ondes P1, N1 et P2. Cela a été aussi noté chez les enfants avec une réhabilitation audioprothétique et un bon développement du langage oral (3).

• De la durée de la stimulation

L'amplitude augmente lorsque la durée de la stimulation augmente, et au contraire diminue lorsque les temps de montée et de descente excèdent 50 ms.

• De la binauralité

L'amplitude est plus grande lorsque la stimulation est binaurale plutôt que monaurale sans variation des latences.

• Du nombre de stimuli

Plus le nombre de stimuli présentés augmente et plus la réponse en amplitude diminue. Cet effet est maximal lorsque l'on présente les cinq premiers stimuli et serait principalement due à la période neurale réfractaire. Il est spécifique du stimulus car, si un nouveau son est introduit, l'amplitude de l'onde N1 augmente en amplitude, par une quantité proportionnelle au changement du stimulus.

• Du bruit environnant

Lors des enregistrements des PEAC, un bruit de fond est souvent utilisé pour représenter les difficultés d'écoute rencontrées dans l'environnement quotidien. Ce bruit de fond va avoir un impact sur la morphologie du PEAC. Plus le rapport signal sur bruit est important, plus l'amplitude diminue et plus la latence augmente. La présence d'un appareil auditif va également jouer sur la morphologie du PEAC en fonction du bruit envoyé, avec une diminution de l'amplitude et une augmentation de la latence lors du port de l'audioprothèse (8).

• Des sujets

L'état de vigilance du sujet peut impacter la morphologie du PE, en cas d'endormissement, cela entraîne une diminution de l'amplitude de l'onde N1 et l'émergence d'une négativité à 300 ms.

L'âge du sujet entraîne une variation de la morphologie des PEAC, reflétant les phénomènes de maturation corticale. Lors des premières années de la vie, une large onde P1 est enregistrée, suivie d'une négativité arrivant aux alentours de 200 à 150 ms après le début de la stimulation. Par la suite,

il y aura une réduction de la latence de l'onde P1 et l'émergence de l'onde N1. À l'âge de 9-10 ans, les ondes P1, N1 et P2 deviennent similaires à celle des adultes. En temporal (complexe T), ces potentiels continuent à évoluer dans la seconde décade de la vie et se modifient encore au cours du vieillissement. Plus le sujet est âgé, plus la latence des ondes N1 et P2 est tardive.

Étude des réponses auditives corticales chez le sujet avec une réhabilitation auditive

Les PEAC sont utilisés en recherche pour explorer le cortex auditif des patients implantés cochléaires afin de mettre en relation leurs indices neurophysiologiques avec leurs performances auditives et langagières (10). Les mêmes objectifs ont pu être notés chez les patients avec audioprothèses (3).

Chez des patients adultes avec une réhabilitation auditive, il a été mis en évidence, sur des études longitudinales, des phénomènes de réorganisation cérébrale à la suite du rétablissement de la fonction auditive, y compris en cas de surdité unilatérale où la fonction binaurale est rétablie par un IC (11, 12).

Chez l'enfant, après implantation cochléaire, il a été observé dans des études longitudinales que, même si la latence de l'onde P1 est retardée, elle va au fur et à mesure diminuer avec le port de l'aide auditive (13), cela suggère que l'IC a permis la maturation du cortex auditif. En effet, les latences de l'onde P1 diminuent rapidement à partir de l'activation de l'IC et atteignent, dans les six mois après activation de l'IC, des latences correspondant à celles des enfants normo-entendants de même âge dans le cas d'implantation précoce (avant 3,5 ans) (13). Pour les enfants implantés entre 3,5 et 6,5 ans, les latences sont significativement plus élevées que celles des enfants normo-entendants de même âge. Pour les implantés après l'âge de 7 ans, les latences sont très retardées, quelle que soit la durée du port d'implant (15). Ainsi, ces études électrophysiologiques suggèrent que la période de plasticité du cortex auditif est maximale jusqu'à 3,5 ans (14, 15).

Cependant, lors de la réalisation des PEAC chez les patients implantés cochléaires, il va être enregistré un artefact de grande amplitude (dû à l'IC) qui va masquer les réponses auditives corticales ipsilatérales à l'IC. Afin d'étudier les réponses auditives corticales, il est nécessaire de minimiser cet artefact. L'analyse en composantes indépendantes (ACI) est une analyse statistique qui décompose le signal en un ensemble de sources indépendantes qui le composent, permettant d'identifier les composantes dues à l'artefact et de les supprimer. L'ACI a été utilisée pour traiter le signal des patients IC et rejeter l'artefact de stimulation de l'IC avec de bons résultats chez l'enfant (16) et chez l'adulte (17), permettant notamment la réalisation de cartographie de champs de potentiel et de densité de courant. L'identification de cet artefact est détectée manuellement comme étant représentée du côté de l'oreille implantée, en phase avec la stimulation auditive, et de grande amplitude.

Les PEAC ont également été utilisés comme marqueurs objectifs pour évaluer la sonie des sujets normo-entendants et atteints de surdité neurosensorielle avec et sans aides auditives (18). Les résultats montrent un fort impact de l'intensité sur les PEAC. Le port de l'appareil auditif entraînait peu de différence sur les PEAC, contrairement aux tests subjectifs d'évaluation de sonie. Ces résultats laissent supposer que la stimulation auditive induite par l'appareil de correction auditive n'affecterait pas la représentation neurophysiologique du son au niveau du cortex auditif. Ainsi, l'amplification de l'appareil de correction auditive affecterait différemment les réponses neurales, en comparaison de l'intensité du stimulus.

Enfin, il est également possible d'adapter le protocole des PEAC afin d'évaluer la discrimination auditive corticale de manière objective et non invasive. Cette mesure est appelée la Mismatch Negativity (MMN) et correspond au reflet d'un processus automatique de détection d'une différence entre un stimulus sensoriel perçu et la trace mnésique sensorielle laissée par les stimuli précédents (19). La MMN est enregistrée à l'aide d'un paradigme « oddball » présentant occasionnellement des stimuli différents (déviants) dans une suite de

stimuli identiques (standards). Elle est obtenue par une soustraction entre la réponse des standards et celles des déviants. Une étude a mis en évidence l'apparition de la MMN suite au port des aides auditives chez des sujets malentendants présentant une perte auditive moyenne, laissant supposer une diminution de l'activité cérébrale (20). Ce constat n'est pas retrouvé pour les pertes auditives sévères, montrant un manque d'efficacité de l'appareillage pour ce type de perte. Les résultats demeurent également plus bas que ceux des sujets normo-entendants, traduisant un effort d'écoute plus important, malgré l'appareillage auditif.

Perspectives

Le développement de l'EEG haute densité (jusqu'à 256 électrodes) permet aujourd'hui une cartographie très précise de l'activation corticale. Cela ouvre la voie à une meilleure compréhension des réseaux impliqués dans la perception auditive, notamment chez les patients malentendants.

L'intelligence artificielle est également intégrée à l'analyse des PEAC. Des algorithmes d'apprentissage automatique peuvent détecter les artefacts, classifier les formes d'ondes, ou prédire l'évolution clinique en fonction du profil électrophysiologique. Des modèles prédictifs de récupération auditive après implantation sont en cours de validation.

Enfin, le neurofeedback auditif basé sur les PEAC est une piste émergente : il consiste à présenter en temps réel aux patients des signaux visuels ou auditifs reflétant leur propre activité corticale, afin de renforcer certaines réponses. Cela pourrait constituer une voie d'entraînement pour les enfants atteints de trouble de l'attention ou de traitement auditif central.

Conclusion

Les PEAC sont un outil intéressant pour mieux comprendre les phénomènes de maturation corticale et de plasticité cérébrale. Leur richesse d'information permet d'éclairer des situations complexes, de valider des décisions thérapeutiques et d'accompagner les patients dans leur parcours de soins. En complément des évaluations sub-

6

jectives, les PEAC apportent une objectivité essentielle, notamment chez les enfants, les personnes âgées ou les patients présentant des comorbidités.

L'avenir des PEAC s'inscrit dans une dynamique d'innovation et d'interdisciplinarité. Grâce à l'évolution des techniques d'enregistrement, des outils d'analyse, et de leur intégration dans les pratiques cliniques, les PEAC pourraient devenir un outil essentiel dans le suivi et la réhabilitation de la fonction auditive. En synthèse, les PEAC offrent non seulement une fenêtre sur le fonctionnement auditif cérébral en termes de recherche, mais pourraient aussi devenir une aide thérapeutique pour une audiologie de précision et personnalisée.

Références I

- 1. Bukard R, Don M, Eggermont JJ. Auditory Evoked Potentials: Basic Principles and Clinical Application. Lippincott Williams et Wilkins. Philadelphia, 2007.
- 2. Vidal J, Bonnet-Brilhault F, Roux S, Bruneau N. Auditory Evoked Potentials to Tones and Syllables in Adults: Evidence of Specific Influence on N250 Wave. *Neurosci Lett.* 2005;378(3):145-9.
- 3. Bakhos D, Delage H, Galvin J, et al. Cortical Electrophysiological Markers of Language Abilities in Children with Hearing AIDS: a Pilot Study. Biomed Res Int. 2014;2014:198153.
- 4. Groen MA, Alku P, Bishop DV. Lateralisation of Auditory Processing in Down Syndrome: a Study of T-Complex Peaks Ta and Tb. *Biol Psychol.* 2008;79(2):148-57.
- 5. Bruneau N, Bonnet-Brilhault F, Gomot M, Adrien JL, Barthélémy C. Cortical Auditory Processing and Communication in Children with Autism: Electrophysiological/Behavioral Relations. *Int J Psychophysiol.* 2003;51(1):17-25.
- 6. Rogier O, Roux S, Belin P, Bonnet-Brilhault F, Bruneau N. An Electrophysiological Correlate of Voice Processing in 4- to 5-Year-Old Children. *Int J Psychophysiol.* 2010;75(1):44-7.
- 7. Bakhos D, Galvin J, Roux S, Lescanne E, Bruneau N. Cortical Processing of Vocal and Nonvocal Sounds in Cochlear-Implanted Children: An Electrophysiological Study. *Ear Hear.* 2018;39(1):150-160.
- 8. Billings CJ, Tremblay KL, Souza PE, Binns MA. Effects of Hearing Aid Amplification and Stimulus Intensity on Cortical Auditory Evoked Potentials. *Audiol Neurootol.* 2007;12(4):234-46.
- 9. Visram AS, Innes-Brown H, El-Deredy W, McKay CM. Cortical Auditory Evoked Potentials as an Objective Measure of Behavioral Thresholds in Cochlear Implant Users. *Hear Res.* 2015;327:35-42.
- 10. Gordon KA, Tanaka S, Wong DD, Papsin BC. Characterizing Responses from Auditory Cortex in Young People with Several Years of Cochlear Implant Experience. *Clin Neurophysiol.* 2008;119(10):2347-62.
- 11. Legris E, Galvin J, Roux S, et al. Cortical Reorganization after Cochlear Implantation for Adults with Single-Sided Deafness. *PLoS One.* 2018;13(9):e0204402.
- 12. Legris E, Galvin J, Roux S, Aoustin JM, Bakhos D. Development of Cortical Auditory Responses to Speech in Noise in Unilaterally Deaf Adults Following Cochlear Implantation. *PLoS One.* 2020;15(9):e0239487.
- 13. Ponton C, Don M, Eggermont J, Waring M, Masuda A. Maturation of Human Cortical Auditory Function: Differences between Normal Hearing Children and Children with Cochlear Implants. *Ear Hear.* 1996;17(5):430-437.
- 14. Sharma A, Dorman MF, Spahr AJ. A Sensitive Period for the Development of the Central Auditory System in Children with Cochlear Implants: Implications for Age of Implantation. *Ear Hear.* 2002;23(6):532-9.
- 15. Sharma A, Dorman MF, Kral A. The Influence of a Sensitive Period on Central Auditory Development in Children with Unilateral and Bilateral Cochlear Implants. *Hear Res.* 2005;203(1-2):134-43.
- 16. Bakhos D, Roux S, Robier A, et al. Minimization of Cochlear Implant Artifact in Cortical Auditory Evoked Potentials in Children. Int J Pediatr Otorhinolaryngol. 2012;76(11):1627-32.
- 17. Viola FC, De Vos M, Hine J, et al. Semi-Automatic Attenuation of Cochlear Implant Artifacts for the Evaluation of Late Auditory Evoked Potentials. Hear Res. 2012;284(1-2):6-15.
- 18. Legris E, Galvin J, Mofid Y, et al. Relationship between Behavioral and Objective Measures of Sound Intensity in Normal-Hearing Listeners and Hearing-Aid Users: A Pilot Study. Brain Sci. 2022;12(3):392.
- 19. Legris E, Gomot M, Charpentier J, Aoustin JM, Aussedat C, Bakhos D. Assessment of Auditory Discrimination in Hearing-Impaired Patients. *Eur Ann Otorhinolaryngol Head Neck Dis.* 2018;135(5):335-339.
- 20.Korczak PA, Kurtzberg D, Stapells D. Effects of Sensorineural Hearing Loss and Personal Hearing Aids on Cortical Event-Related Potential and Behavioral Measures of Speech-Sound Processing. *Ear Hear.* 2005;26(2):165-185.

Le système vestibulaire : un modulateur émergent du sommeil et des rythmes circadiens

Pr Pierre Denise, Unité COMETE, Université de Caen Normandie/Inserm; Service de neurologie, CHU de Caen Normandie.

Le sommeil représente environ un tiers de la vie humaine, mais ses fonctions biologiques et ses mécanismes de régulation ne restent que très partiellement élucidés. Longtemps considéré comme un état passif, il est désormais reconnu comme un processus actif, sous-tendu par des réseaux neuronaux spécifiques. Parmi les nombreux systèmes impliqués dans la régulation du sommeil, le système vestibulaire - traditionnellement associé à l'équilibre et à la perception du mouvement - suscite un intérêt croissant en tant que modulateur des rythmes circadiens et de la qualité du sommeil. Cette hypothèse, encore récente, s'appuie sur des données cliniques et expérimentales qui révèlent des liens fonctionnels entre les structures vestibulaires et les centres de régulation du sommeil. À l'inverse, il est maintenant démontré que les troubles du sommeil peuvent aggraver la symptomatologie vestibulaire. Il semble donc exister des interactions bilatérales complexes entre système vestibulaire et sommeil.

Le sommeil : une architecture complexe et dynamique

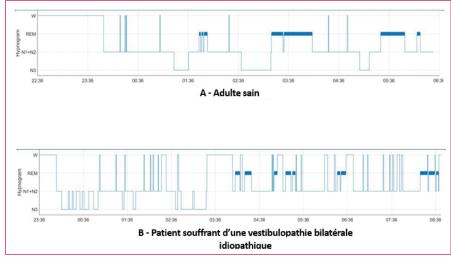
L'exploration du sommeil repose sur la polysomnographie, qui combine (EEG), l'électromyogramme (EMG) et l'électrooculogramme (EOG). Ces outils permettent de distinguer les stades de sommeil en fonction de l'activité corticale, du tonus musculaire et des mouvements oculaires (1).

Le sommeil se divise en deux grands états: le sommeil lent (SL), comprenant les stades 1 à 4, et le sommeil paradoxal (SP), caractérisé par une activité corticale intense et des rêves élaborés. Ces états alternent selon une organisation cyclique au cours de la nuit, représentée par l'hypnogramme. Comme le montre la *Figure n° 1*, la première

moitié de nuit est dominée par le SL profond, tandis que le SP prédomine en seconde partie ⁽²⁾.

Les mécanismes de régulation du sommeil

Deux processus principaux régulent le sommeil. Le plus anciennement connu, même s'il n'était pas explicitement défini, est le processus homéostasique, qui reflète l'accumulation du besoin de sommeil en fonction du temps passé éveillé (3). En d'autres termes, pendant l'éveil une substance s'accumulerait qui, au-delà d'un certain seuil, entraînerait la propension au sommeil; pendant le sommeil, cette substance serait progressivement éliminée et en dessous d'un autre seuil le réveil surviendrait.


Le second processus est la régulation circadienne, orchestrée par une horloge interne située dans les noyaux suprachiasmatiques (SCN) de l'hypothalamus ⁽⁴⁾. L'expérience la plus célèbre ayant mis en évidence ce processus est celle de Michel Siffre en 1962, isolé dans une grotte sans repère temporel, qui a démontré l'existence

d'un rythme circadien endogène (5). Ce rythme étant proche de 25 heures, il doit être ajusté quotidiennement par des synchroniseurs, la lumière étant le plus puissant d'entre eux. D'autres jouent également un rôle tels que les synchroniseurs sociaux ou l'activité motrice. Des données récentes suggèrent que la stimulation vestibulaire pourrait également être un puissant synchroniseur.

Le système vestibulaire : au-delà de l'équilibre

Le système vestibulaire, situé dans l'oreille interne, est impliqué dans la stabilisation du regard (réflexe vestibulo-oculaire), le maintien de l'équilibre postural et la perception du mouvement. Ses connexions anatomiques s'étendent vers l'hypothalamus, le thalamus, le cortex pariétal, le système limbique... autant de régions impliquées dans la régulation végétative, les émotions, la mémoire spatiale et les rythmes biologiques ⁽⁶⁾.

Il a été montré que l'exposition à l'hypergravité faisait disparaître les rythmes

Figure n°I | Hypnogramme d'un adulte sain (A) et d'un patient souffrant d'une vestibulopathie idiopathique bilatérale (B). W : éveil ; REM : sommeil paradoxal ; N1 + N2 : sommeil lent léger (stades 1 et 2) ; N3 : sommeil lent profond (stades 3 et 4).

Le système vestibulaire, un régulateur du sommeil encore méconnu

- Le sommeil est un processus actif, régulé par des réseaux neuronaux spécifiques et des rythmes circadiens.
- Le système vestibulaire, au-delà de son rôle dans l'équilibre, possède des connexions directes avec les centres de régulation du sommeil (hypothalamus, thalamus, cortex limbique).
- Les données cliniques montrent que les patients souffrant de dysfonction vestibulaire présentent un sommeil plus fragmenté, moins efficace, et une activité nocturne accrue.
- Les entrées vestibulaires pourraient agir comme des synchroniseurs biologiques, influençant l'horloge circadienne.

circadiens de souris normales alors qu'elle n'avait aucun effet chez des souris dépourvues de système otolithique fonctionnel (7). Ces résultats suggèrent que les entrées vestibulaires pourraient agir comme des donneurs de temps, influençant l'horloge biologique.

Plusieurs études cliniques montrent un lien entre troubles du sommeil et troubles vestibulaires. Ainsi, l'étude de Katzenberger et al. (2023), issue du registre DizzyReg, a mis en évidence une association significative entre vertiges et altération de la qualité du sommeil: une mauvaise qualité de sommeil est associée à la durée prolongée des vertiges (8). Ces études observationnelles ne permettent pas de déterminer si cette corrélation correspond à une relation de cause à effet ni, a fortiori, son sens (les troubles vestibulaires influencent-ils le sommeil ou l'inverse?).

Cependant, une étude, menée par Martin *et al.* ⁽⁹⁾, a comparé les rythmes circadiens et le sommeil de patients atteints de vestibulopathie bilatérale idiopathique (VBI) à ceux de sujets contrôles (appariés en sexe, âge et

niveau socioprofessionnel). Les résultats sont sans appel :

- 44 % des patients VBI ont des troubles du sommeil cliniquement significatifs (score PSQI supérieur à 5) contre seulement 6,25 % chez les contrôles;
- Le sommeil des VBI est plus fragmenté, avec davantage d'éveils nocturnes (voir Figure n° 1);
- L'efficacité du sommeil est significativement réduite (inférieure à 85 %), traduisant une difficulté à maintenir le sommeil;
- L'activité motrice nocturne des VBI est augmentée, réduisant le contraste entre jour et nuit.

Ces données convergent vers une altération du rythme veille-sommeil chez les patients vestibulaires, suggérant un rôle du système vestibulaire dans la synchronisation circadienne.

Chez le sujet sain, on observe une structure normale caractérisée par une série de cycles d'environ 1 h 30 commençant par du sommeil lent s'approfondissant progressivement et se terminant par du sommeil paradoxal. On observe quelques épisodes de veille,

généralement trop courts pour laisser un souvenir de réveil.

Chez le patient souffrant d'une vestibulopathie bilatérale idiopathique, cette structure, bien que restant reconnaissable, est très irrégulière avec en particulier un grand nombre de réveils dégradant la qualité du sommeil.

Vers une approche thérapeutique : la stimulation vestibulaire

Face à ces constats, la stimulation vestibulaire apparaît comme une piste thérapeutique innovante des troubles du sommeil. La revue systématique de Galin *et al.* (10) a analysé 96 études, dont 12 ont été retenues pour leur qualité méthodologique. Parmi elles, 8 sur 11 ont montré un effet bénéfique de la stimulation vestibulaire sur le sommeil, et plusieurs ont rapporté une amélioration des rythmes circadiens.

La stimulation électrique vestibulaire pourrait renforcer l'activité des connexions vestibulo-hypothalamiques et moduler l'activité des SCN améliorant ainsi la qualité du sommeil, réduisant les éveils nocturnes et rétablissant un contraste jour-nuit plus marqué.

Cette approche, encore expérimentale, mérite d'être approfondie dans des essais cliniques contrôlés, notamment chez les patients souffrant de troubles du sommeil résistant aux traitements classiques.

Conclusion

Le système vestibulaire, longtemps cantonné à la sphère de l'équilibre et de la perception du mouvement, révèle aujourd'hui son implication dans des fonctions plus larges, notamment la régulation du sommeil et des rythmes circadiens. Les données cliniques et expérimentales convergent vers une influence significative de ce système sur la qualité du sommeil, en particulier chez les patients présentant une hypofonction vestibulaire.

La stimulation vestibulaire, qu'elle soit électrique ou mécanique, ouvre des perspectives thérapeutiques prometteuses, à la croisée des neurosciences,

Vers une approche thérapeutique par stimulation vestibulaire

- La stimulation vestibulaire (électrique ou mécanique) améliore la qualité du sommeil dans plusieurs études cliniques et expérimentales.
- Elle agit à la fois sur les rythmes circadiens et sur la consolidation du sommeil nocturne.
- Cette approche ouvre des perspectives thérapeutiques pour les troubles du sommeil liés à une désynchronisation circadienne ou à une hypofonction vestibulaire
- Elle mérite d'être explorée dans des essais cliniques contrôlés pour valider son efficacité et définir ses indications.

de la chronobiologie et de la médecine du sommeil. Elle pourrait constituer une nouvelle voie dans la prise en charge des troubles du sommeil, en particulier ceux liés à une désynchronisation circadienne.

Références I

- 1. Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. U.S. Departm. of Health, Bethesda/Md. 1968.
- 2. Broussin P, Guichard K, Micoulaud-Franchi J-A, Philip P. Le Sommeil et ses Pathologies. Éditions Ellipses, 2024.
- 3. Borbély AA. A Two-Process Model of Sleep Regulation. Hum Neurobiol. 1982;1(3):195-204.
- 4. Moore RY. Suprachiasmatic Nucleus in Sleep-Wake Regulation. Sleep. 1995;18(6):523-526.
- 5. Siffre M. Beyond Time. 1964.
- 6. Martin T, Pasquier F, Denise P, Davenne D, Quarck G. The Relationship between the Vestibular System and the Circadian Timing System: A Review. Sleep Medicine. 2025;126:148-158.
- 7. Fuller PM, Fuller CA. Genetic Evidence for a Neurovestibular Influence on the Mammalian Circadian Pacemaker. *J Biol Rhythms*. 2006 Jun;21(3):177-84.
- 8. Katzenberger B, Brosch F, Besnard S, Grill E. Vestibular Hypofunction Is Associated with Impaired Sleep: Results from the DizzyReg Patient Registry. J Clin Med. 2023;12(5903).
- 9. Milot E, Martin T, Kuldavletova O, et al. Exploration of Sleep Quality and Rest-Activity Rhythms Characteristics in Bilateral Vestibulopathy patients. Sleep Med. 2024 Dec;124:9-15.
- 10. Galin M, Milot E, Martin T, et al. Does Vestibular Stimulation Modify Circadian Rhythms and Sleep? A Systematic Review. Sleep Med. 2025;131:106520.

SYNTHÈSE

Objets connectés et sommeil: état des lieux, validation scientifique et perspectives cliniques

Pr Rémi Marianowski, service d'ORL, CHU de Brest remi.marianowski@chu-brest.fr

Le sommeil est un déterminant fondamental de la santé physique et mentale, et sa perturbation chronique est associée à des risques accrus de maladies cardiovasculaires, métaboliques, psychiatriques et neurodégénératives (1). Toutefois, l'évaluation clinique du sommeil repose encore largement sur des outils coûteux,

invasifs ou faiblement accessibles, tels ois, que la polysomnographie (PSG). Dans ce contexte, les objets connectés — montres, bagues, capteurs de lit ou applications mobiles — offrent une solution non invasive, continue et accessible pour la

mesure du sommeil à domicile.

Nous avons mené une revue en interrogeant PubMed, Scopus et IEEE Xplore jusqu'en juin 2025 avec les mots-clés suivants: "wearable", "sleep tracking", "actigraphy", "consumer sleep technology", "validation", "digital biomarkers". Les articles ont été sélectionnés selon leur pertinence clinique, leur méthodologie (comparaison à la PSG) et leur représentativité des grandes familles technologiques actuelles.

Les objets connectés dédiés au sommeil se classent en deux grandes catégories :

 Portables (Wearables): montres connectées (Apple Watch, Fitbit, Garmin), bagues (Oura Ring), bracelets sportifs. Ils reposent sur des capteurs inertiels (actimétrie), photopléthysmographiques (PPG), thermiques et parfois électrodermiques;

• Non portables (*Non-wearables*): capteurs de matelas (Withings Sleep, Eight Sleep, Emfit QS, Somnofy). Ils sont placés sous le matelas ou à proximité du lit. Ils utilisent, suivant les matériels, un doppler, un radar ou des moniteurs environnementaux. Ils mesurent les micromouvements, la saturation, la fréquence respiratoire et la fréquence cardiaque sans contact direct.

Les dispositifs évaluent généralement : la durée totale du sommeil (TST), la latence d'endormissement, l'efficacité du sommeil, la répartition des stades de sommeil (N1/N2/N3/REM) selon des algorithmes propriétaires et un indice d'apnées estimé via SpO₂ nocturne et micro-éveils (moins validé).

La validité par rapport à la PSG varie selon les appareils

L'actimétrie (algorithme Cole-Kripke, Sadeh) reste fiable pour distinguer les périodes de sommeil/veille (sensibilité > 90 %, spécificité < 60 %) (2). Les

stades de sommeil sont moins précis: la détection du sommeil profond est souvent surestimée, et les phases REM mal identifiées ⁽³⁾. Seule la plateforme Withing Sleep présente une corrélation proche d'une polygraphie ventilatoire nocturne ⁽⁴⁾. L'Oura Ring (3^e génération) et le Fitbit Sense ont montré des corrélations modérées avec PSG pour la structure du sommeil, mais une variabilité interindividuelle importante ⁽⁵⁾.

Des usages cliniques émergents

Ces outils connectés permettent un dépistage de troubles du sommeil (insomnie, syndrome d'apnée) en soins primaires avec une approche non invasive. Ils permettent d'assurer un suivi longitudinal personnalisé chez les patients atteints de troubles neurologiques, métaboliques ou sous traitement par ventilation en pression positive nocturne. Ils fournissent un support à la thérapie cognitivo-comportementale de l'insomnie (TCC-I) via un feedback numérique (ex: Sleepio, CBTi Coach).

Ils permettent des études de recherche en épidémiologie numérique et en médecine du mode de vie.

Avancées et bénéfices

Ces objets connectés démocratisent l'accès à une quantification continue et écologique du sommeil, dans un contexte ambulatoire. Ils permettent une approche personnalisée et comportementale du sommeil, en lien avec l'environnement et les habitudes numériques de l'utilisateur. Leur intégration dans des parcours de soins commence à émerger, en particulier dans la santé mentale et la médecine du sport.

Limites

Une des principales limites est l'absence d'encadrement réglementaire clair (peu de dispositifs sont certifiés comme dispositifs médicaux). La fiabilité dans le temps de ces dispositifs n'a pas été évaluée. Les études de validation ont été menées avec des populations comportant une surreprésentation des jeunes adultes en

Ce qu'il faut retenir

- Ce que peuvent apporter les objets connectés :
- -Outil complémentaire au recueil clinique, en particulier en médecine du sommeil, psychiatrie, médecine générale et sport-santé ;
- -Support à la prise de conscience comportementale (sommeil, activité, exposition lumineuse);
- -Adhésion renforcée aux thérapies comportementales (notamment TCC-I) via le feedback personnalisé.
- Limites actuelles :
- -Non validés pour un diagnostic médical (ex : insomnie, apnée du sommeil), sauf rares exceptions ;
- -Qualité des données variable selon le profil utilisateur (âge, comorbidités, comportement nocturne);
- -Interprétation des données parfois anxiogène → risque d'orthosomnie ;
- -Confidentialité des données : attention aux plateformes hors UE ou sans certification RGPD/HIPAA.
- Recommandations d'usage pour les professionnels de santé :
- -Utiliser ces outils comme soutien à l'anamnèse, non comme substitut à un examen clinique ou une polysomnographie;
- -Informer le patient sur les limites techniques et les risques d'auto-interprétation erronée ;
- -Préférer les appareils ayant fait l'objet d'études publiées, avec accès aux données brutes et exportables ;
- -Encourager une utilisation continue à visée comportementale, plutôt qu'obsessionnelle ou ponctuelle.
- Indications cliniques pertinentes :
- -Suivi de l'insomnie chronique;
- -Suivi de la récupération après pathologie aiguë ou épisode psychiatrique ;
- -Évaluation des effets d'une hygiène du sommeil ou d'un traitement comportemental ;
- -Surveillance à domicile en population à risque (sujets âgés, troubles cognitifs débutants, sportifs professionnels).

bonne santé. Il s'agit donc d'une validité partielle avec un biais notable. Il existe des effets contre-productifs possibles tels que l'orthosomnie (anxiété liée au sommeil), avec une interprétation erronée de données brutes par le patient ⁽⁶⁾.

Enfin la principale limite concerne la sécurisation des données, qui sont la propriété d'un logiciel du fabricant ou stockées sur un cloud dont la localisation est inconnue de l'utilisateur. Cela soulève des problèmes éthiques avec l'absence de consentement éclairé et la possibilité d'une surveillance intrusive (7). Il faut savoir que les données liées au sommeil sont un enjeu majeur pour les GAFAM, à tel point qu'on a pu les qualifier d'être à l'origine du « Big

data du marchand de sable ». En effet, dans une économie de l'attention, la connaissance des habitudes de sommeil d'une population est cruciale pour développer des campagnes de publicité.

Perspectives

Une amélioration des algorithmes par l'apprentissage profond supervisé sur données de PSG, y compris en populations pathologiques, permettra sans doute d'améliorer la fiabilité des capteurs connectés et leur acuité diagnostique.

Une fusion de signaux multi-capteurs (PPG + EEG frontal léger + audio) pour rendre plus rapide et plus fiable la classification des stades de sommeil.

Une intégration dans des plateformes de santé numérique interopérables (DMP) pour croiser les données comportementales et biologiques avec tous les risques que comporte le partage des données de santé (7).

Conclusion

Les objets connectés pour le sommeil représentent un outil prometteur dans une perspective de prévention, dépistage et suivi longitudinal des troubles du sommeil. Toutefois, leur usage clinique doit rester prudent, encadré et validé au cas par cas. La recherche translationnelle et une meilleure régulation sont nécessaires pour transformer ces technologies grand public en outils robustes de médecine du sommeil de précision.

Références •

- 1. Chattu VK, Manzar MD, Kumary S, *et al.* The Global Problem of Insufficient Sleep and Its Serious Public Health Implications. *Healthcare (Basel).* 2018;7:1.
- 2. Marino M, Li Y, Rueschman MN, et al. Measuring Sleep: Accuracy, Sensitivity, and Specificity of Wrist Actigraphy compared to Polysomnography. Sleep. 2013;36:1747-55.
- 3. Miller DJ, Sargent C, Roach GD. A Validation of Six Wearable Devices for Estimating Sleep, Heart Rate and Heart Rate Variability in Healthy Adults. *Sensors (Basel)*. 2022;22(16):6317.
- 4. G Ravindran KK, Della Monica C, Atzori G, ét al. Reliable Contactless Monitoring of Heart Rate, Breathing Rate, and Breathing Disturbance During Sleep in Aging: Digital Health Technology Evaluation Study. *JMIR Mhealth Uhealth*. 2024;12:e53643.
- 5. de Zambotti M, Rosas L, Colrain IM, Baker FC. Behav The Sleep of the Ring: Comparison of the OURA Sleep Tracker Against Polysomnography. *Sleep Med.* 2019;17:124-136.
- 6. Baron KG, Abbott S, Jao N, et al. Orthosomnia: Are Some Patients Taking the Quantified Self Too Far? J Clin Sleep Med. 2017;13:351-354.
- 7. Chee MWI, Baumert M, Scott H, et al. World Sleep Society Recommendations for the Use of Wearable Consumer Health Trackers that Monitor Sleep. Sleep Med. 2025;131:106506.

REGARDS CROISÉS

Prise en charge du patient malentendant en exercice professionnel dans un environnement bruyant

Yoann Juenet, audioprothésiste, Centre Amplifon Valmy, Dijon et Service d'ORL, CHU de Dijon. yoann.juenet@amplifon.com

En audioprothèse, pour atteindre les objectifs de satisfaction d'un patient, il n'est pas rare d'avoir des demandes autres qu'une simple correction de la perte auditive. Comme nous l'avons étudié dans une revue précédente, l'audioprothésiste pourra par exemple mettre en place des générateurs de bruit afin de traiter les acouphènes ou l'hyperacousie. Nous allons voir que, lors de l'appareillage du malentendant travaillant dans un milieu

bruyant considéré comme nocif pour son audition, l'audioprothésiste devra relever le défi de la réalisation d'un matériel non seulement de correction de la perte auditive, mais aussi de protection auditive active.

Les premières observations de dégradation de l'audition par le bruit ont été faites chez les artisans exposés au bruit dès le début du XVIII^e siècle ^(1, 2). Aujourd'hui, de nombreuses études se sont penchées sur le sujet et démontrent l'effet nocif de l'exposition au bruit chez certains travailleurs (3, 4, 5). Il est important de noter que les effets du bruit varient selon plusieurs critères comme la durée, l'intensité, la fréquence et bien évidemment la sensibilité du patient. En France, la prévention vis-àvis du bruit en milieu professionnel est régie par le Code du travail. Tout d'abord l'employeur doit évaluer les niveaux d'exposition. Pour rappel, le niveau

II

Seuil/Niveau d'exposition	Paramètres	Exigences/Actions
Quel que soit le niveau	-	 Évaluation du risque Suppression ou réduction du risque, en particulier à la source Consultation et participation des travailleurs (évaluation, mesures, choix des PICB) Bruit dans les locaux de repos compatible avec leur destination
Valeur d'exposition inférieure déclenchant l'action (VAI)	Lex 8h ≥ 80 dB(A) ou Lp,c ≥ 135 dB(C)	 Mise à disposition des PICB Information et formation des travailleurs (risques, résultats d'évaluation, bon usage des PICB) Examen audiométrique préventif (sur demande du travailleur ou du médecin)
Valeur d'exposition supérieure déclenchant l'action (VAS)	Lex 8h ≥ 85 dB(A) ou Lp,c ≥ 137 dB(C)	 Mise en œuvre d'un programme de réduction de l'exposition au bruit Signalisation des endroits concernés (bruyants) et limitation d'accès Contrôle de l'utilisation effective des PICB
Valeur limite d'exposition (VLE)	Lex 8h ≥ 87 dB(A) et Lp,c ≥ 140 dB(C)	 Adoption immédiate de mesures de réduction du bruit Identification des causes de l'exposition excessive et adaptation des mesures de protection

Lex 8h : Exposition moyenne sur 8 heures ; Lp,c : Niveau de pression acoustique de crête PICB : protection individuelle contre le bruit

Tableau n° I | Législation concernant la protection des salariés contre le bruit (6).

d'exposition sonore ne doit pas dépasser 80 dB(A) (évaluation en décibels d'un niveau sonore avec la pondération A de la norme CEI 61672-1) pendant un laps de temps de huit heures et, à partir de 85 dB(A), l'employeur se doit de munir ses employés de protection individuelle contre le bruit (*Tableau n° 1*).

Protection contre le bruit

Dans certains cas de prise en charge, surtout chez des jeunes actifs, l'audioprothésiste devra aussi mettre en place des systèmes de protection vis-à-vis du bruit. La plupart du temps, cette protection se fera à l'aide de bouchons anti-bruit que le patient portera lors de son activité professionnelle en milieu bruyant. Il en existe à ce jour différents types. Il y a tout d'abord les bouchons anti-bruit standards et les bouchons anti-bruit sur mesure. Ces derniers démontrent une meilleure efficacité surtout sur les hautes fréquences. Les standards donnent des résultats intéressants mais souvent plus aléatoires en fonction de l'anatomie du conduit auditif et d'une mise en place moins évidente et souvent aléatoire (7).

Les bouchons anti-bruit sur mesure sont des équipements de protection individuelle (EPI) reconnus comme particulièrement performants et sont principalement réalisés en matière souple afin d'augmenter le confort et l'étanchéité. Ils présentent différents filtres qui permettront des niveaux d'atténuation différents en fonction des besoins du patient. Ce matériel devra répondre à des critères de sécurité et de performance fixés par la norme européenne EN 352/2. Dans l'exemple ci-dessous, pour des bouchons Passtop

(Figure n° 1), on peut voir les courbes d'atténuation de différents filtres recommandés pour la protection d'un patient travaillant en environnement bruyant. Ce sont des bouchons anti-bruit réalisés sur mesure. Le filtre sélectif permet une protection maximale sur les hautes fréquences et une transition phonétique intéressante en atténuant de façon modérée les fréquences moyennes et

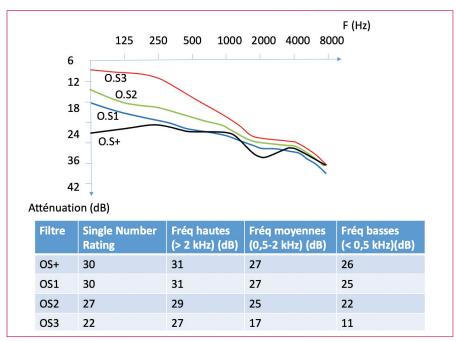


Figure n° I | Courbe d'atténuation de différents filtres d'un bouchon anti-bruit sur mesure Passtop (8).

graves. Plusieurs indices seront encadrés comme le *Single Number Rating* (SNR) qui est la valeur globale d'atténuation moyenne sur l'ensemble des fréquences ainsi que les valeurs d'atténuation pour les hautes, moyennes et basses fréquences.

De plus, il est à noter que la directive EPI 89/686 du 21 avril 2018 a été remplacée par le règlement EPI (UE) 2016/425. Ce nouveau règlement considère le bruit nocif comme un risque irréversible pour la santé. Cela signifie que les protections auditives, qu'elles soient utilisées à des fins privées ou commerciales, sont soumises à des exigences réglementaires plus strictes. Les audioprothésistes sont désormais tenus de s'assurer que les protections auditives sont conformes aux exigences légales en vigueur et que les produits sont testés et certifiés en tant qu'EPI. Aussi, la réalisation d'un test d'étanchéité est exigée par la loi. Ils devront alors obligatoirement réaliser un test d'audition en champ libre avec et sans les protections, avant la première utilisation par le patient.

Patients atteints de surdité

Cependant si le patient présente une surdité, celle-ci pourra compromettre la réalisation de certaines tâches ainsi que sa sécurité et celle de ses collègues (9, 10, 11). La simple protection de ces personnes ne pourra pas corriger leur déficit et donc assurer la sécurité au travail. Certains patients préfèrent porter leurs aides auditives plutôt que les bouchons anti-bruit par peur de ne pas entendre certains signaux considérés comme nécessaires à l'accomplissement de leur travail ou même à leur sécurité. Pour répondre à ces besoins, il faudra corriger la perte auditive afin de lui donner la capacité de percevoir les informations sonores qui l'entourent. La plupart des professionnels de santé ne recommandent pas le port des prothèses auditives dans les situations bruyantes par crainte d'une surexposition aux bruits liés à une amplification des niveaux forts, pouvant ainsi engendrer une augmentation de la dégradation de l'audition du patient. Cette prise en charge soulève donc des interrogations importantes comme le fait de maintenir un niveau d'écoute sécuritaire si le travailleur

est exposé au bruit. Il existe à ce jour peu de recherches scientifiques qui se sont penchées sur le problème du port des aides auditives dans ce genre d'environnement.

Certaines études recommandent alors la mise en place d'un casque antibruit placé sur les oreilles équipées des aides auditives (12). Il interviendra cependant un risque de larsen résultant d'une boucle de rétroaction acoustique. En effet, lorsque le son amplifié par l'aide auditive est capté à nouveau par son microphone, cela génère une amplification continue, créant une résonance. Cette résonance se manifeste par un sifflement, dû à une fréquence de résonance qui est amplifiée en continu. La mise en place d'un casque anti-bruit amplifiera le risque de création de cette boucle. Il engendrera aussi une surprotection qui détériorerait l'amplification à cause d'une diminution des sons faibles. Il existe à ce jour peu de recherches scientifiques qui se sont penchées sur le problème du port de prothèses auditives dans ces circonstances, comme le souligne le rapport de 2018 de l'Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) ⁽¹³⁾.

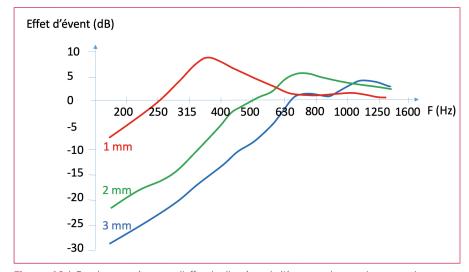
Aujourd'hui, il est fréquent de constater le manque d'informations données aux malentendants qui sont dans cette situation. Ils ne savent pas s'ils doivent porter ou non leurs appareils auditifs lorsqu'ils travaillent. Lorsqu'ils portent leurs bouchons anti-bruit, ils sont bien protégés contre les sons puissants et ressentent moins de gêne, mais cela les empêche de suivre les conversations ou de percevoir les signaux d'alerte. En revanche, lorsqu'ils ne les utilisent pas, ils restent exposés aux bruits intenses, souvent mal tolérés faute d'un réglage non adapté à la protection, mais ils se sentent moins coupés de leur environnement social.

Adaptation au poste de travail

Afin de leur trouver une solution adaptée, il sera essentiel pour le professionnel de déterminer, au cours de l'anamnèse, à la fois le type de bruit, l'intensité mais aussi la durée d'exposition. Les

exigences liées au poste de travail sont très différentes d'un patient à l'autre. Cela pourra nous aiguiller dans la démarche et les choix de la prise en charge et surtout les ajustements que nous devrons effectuer aux réglages des aides auditives.

La solution la plus souvent proposée par les audioprothésistes sera de jongler entre le port des aides auditives au quotidien et celui des protections anti-bruit en milieu professionnel. Seulement, pour la plupart des salariés, cela reste très contraignant et on note fréquemment qu'ils oublient soit de remettre les aides auditives, soit, plus grave, les protections anti-bruit. Il sera donc plus sage de trouver une solution plus pratique. Ces contraintes se retrouvent aussi si nous proposons à notre patient différents programmes avec des méthodes d'adaptation différentes. Nous pourrions par exemple proposer la mise en place d'un écouteur muni d'un dôme semi-obturant et un autre avec une adaptation en embout sur mesure occlus, plus protecteur pour les activités en situation bruyante. Le patient pourra alors venir brancher l'écouteur muni d'une adaptation plus adéquate au milieu qui l'entoure. Il suffira alors de fournir deux paires d'écouteurs à notre patient, l'un pour la vie extra-professionnelle muni d'un dôme plus confortable et un autre pour le temps de travail avec un embout. Les réglages seront cependant difficiles, par exemple la réalisation de l'anti-larsen et la mesure de la cavité résiduelle qui sera alors identique sur l'ensemble des différents programmes, ce qui ne sera malheureusement pas le cas dans la réalité. Cette solution restera aussi contraignante pour le patient.


Les protections auditives actives

Le professionnel devra donc réaliser un équipement de type protection auditive active avec l'appareillage. La prise en charge de notre patient présente plusieurs défis dont les principauxs sont : la protection afin de prévenir toute dégradation du capital auditif, la compréhension de la parole des éventuels collègues et la perception des signaux importants dans l'accomplissement des tâches professionnelles ou sécuritaires.

Dans un premier temps, il va déjà falloir choisir le type d'appareil. Les appareils intra-auriculaires (ITE) ne seront pas recommandés car moins étanches et munis d'outils de gestion du bruit moins importants, surtout au niveau de la directionnalité microphonique. Leur coque, très fine, se montrera un peu juste pour assurer une bonne étanchéité. Les appareils auditifs de type contours d'oreille (Behind-the-Ear, BTE) seront une solution intéressante mais, malheureusement, difficile à accepter pour le patient car insuffisamment discrète. Le choix portera le plus souvent sur les aides auditives de type « Receiver in the Canal » (RIC). Son adaptation pourra se faire à l'aide de deux formules. La première consistera en la mise en place de l'écouteur au sein du conduit auditif externe à l'aide d'un dôme plus ou moins obturant. Souhaitant une protection et donc une bonne étanchéité, notre choix se tournera instinctivement vers des dômes très obturants comme des doubles dômes. Même si ceux-ci peuvent obtenir une bonne mesure d'obturation, il sera important de noter que, n'étant pas sur mesure, rien ne pourra promettre le même résultat en fonction du temps de port ou d'une mise en place pas toujours identique. Nous déciderons donc une adaptation de l'écouteur avec un embout sur mesure. Celui-ci donnera plusieurs avantages, comme une parfaite maîtrise de l'aération, un gain d'insertion plus élevé, une gestion plus précise de la cavité résiduelle, un meilleur maintien et surtout une mise en place plus reproductible.

L'adaptation devra se faire à l'aide d'un embout sur mesure, de préférence en matière siliconée souple en 20 Shore ou 40 Shore. La dureté « shore » est une échelle qui mesure la dureté élastique des matériaux. Plus sa valeur est basse, plus le silicone est souple. Même si un embout de 20 Shore se montrera légèrement plus bénéfique en termes d'étanchéité, nous préconiserons un embout en 40 Shore qui se montrera moins fragile, limitant le risque d'éclatement, comme nous pouvons souvent le constater en particulier sur des conduits auditifs de petit diamètre. Cette matière permettra un plus grand confort et une meilleure isolation acoustique qu'une matière dure comme l'acrylique. Une empreinte longue devra être réalisée afin de fabriquer un embout en insertion profonde et conforter notre gain d'étanchéité. À l'aide d'un éclairage frontal nous utiliserons un coton en mousse de préférence conique afin de réduire la surface de contact entre la rugosité de la mousse et le conduit auditif. Il sera placé jusqu'au deuxième coude afin que celui-ci soit ensuite poussé par la pâte dans le troisième tiers du conduit.

Il faudra prêter une attention particulière au mouvement de la bouche du patient lors de cette étape. En effet, au moment de l'ouverture de la bouche, l'articulation temporo-mandibulaire va déplacer la paroi antérieure du conduit auditif externe entraînant une augmentation du diamètre du conduit. Si l'empreinte est réalisée bouche

Figure n° 2 | Courbes représentant l'effet du diamètre de l'évent sur la pression acoustique en sortie d'une aide auditive munie d'un embout occlus. D'après Kuk et Keenan, 2006 (14).

fermée, l'embout sera bien étanche et maintenu tant que la bouche du patient sera fermée. Mais en cas d'ouverture buccale, il pourra se créer une fuite acoustique, engendrant principalement une perte dans les basses fréquences et une diminution de l'étanchéité. Nous demanderons donc au patient lors de la prise d'empreinte de garder la bouche ouverte en tenant par exemple le pousse entre la mâchoire supérieure et inférieure.

Importance de la forme de l'embout

Le choix de la forme de l'embout ne sera pas non plus à négliger. En effet, plus il sera petit, plus le manque d'étanchéité se fera ressentir. En fonction des besoins du patient, nous pourrons partir sur des embouts de type canule, petits et discrets mais n'assurant pas une grande obturation du conduit auditif externe. Si une protection est nécessaire, le choix s'orientera donc sur un embout de type conque, qui remplit toute la conque et présente la plus grande surface de contact avec la peau.

La mise en place de l'écouteur se fera à l'aide d'un tube de 3 mm de diamètre. Ce tube sera collé à son extrémité à l'aide d'une colle SK87, qui est un adhésif spécialement conçu pour les surfaces en silicone, ce qui la rend idéale pour ce type d'embout. Elle offre une adhérence plus forte et plus durable que les colles cyanolites et surtout, elle évitera le gonflement que peuvent provoquer ces dernières. Il sera essentiel de vérifier régulièrement le bon maintien et l'étanchéité de l'appareillage. L'embout sur mesure d'une aide auditive reste un moyen de protection souvent plus agréable à porter que les protections habituellement fournies. Au premier essayage, une grande importance sera accordée à l'apprentissage du patient sur la mise en place de l'appareillage afin de s'assurer de sa bonne insertion et de son positionnement dans le conduit auditif.

En cas de perte auditive légère sur les basses fréquences, une autre problématique viendra s'ajouter au professionnel: l'effet d'occlusion ou d'autophonation. Il se définit par une perception anormalement amplifiée et résonnante de la propre voix du

patient lorsque le conduit auditif est occlus. En effet, l'entrée cartilagineuse du conduit auditif externe transmet la vibration laryngée. Mais lorsque celle-ci est obstruée, les ondes sonores bloquées dans la cavité résiduelle vont générer des résonances audibles par le patient. Afin de contourner cette problématique, nous pourrons soit créer ou augmenter la taille de l'évent, soit réaliser un embout très profond et de petite taille afin que les vibrations s'échappent naturellement vers l'extérieur diminuant ainsi l'auto-phonation passive. Cependant, comme nous l'avons vu plus haut, de telles réalisations créeront, dans les deux cas, une diminution de l'étanchéité et donc de la protection des oreilles du travailleur.

Lors de la réalisation de l'embout sur mesure, il sera très important de sélectionner l'évent qui aura une influence importante sur notre prise en charge. Il s'agit d'une aération de l'embout auriculaire entre le milieu extérieur et le tympan. Comme nous pouvons le constater sur la *Figure n° 2* représentant les gains d'insertion dus à la présence de l'embout, la fuite des basses fréquences permet de conclure qu'un agrandissement de cette aération favorise une limitation de l'effet d'occlusion.

Mesure in vivo

La mesure *in vivo* sera un outil essentiel dans notre démarche de prise en charge. Elle est obtenue grâce à un matériel qui effectue une analyse en temps réel de l'amplification délivrée par l'appareil auditif directement dans le conduit auditif du patient *(Figure n° 3)*. Grâce à une sonde de mesure placée dans

le conduit auditif, on peut comparer avec précision la réponse acoustique obtenue aux cibles théoriques définies par les réglages audioprothétiques.

Il nous permettra ici d'évaluer avec précision l'étanchéité obtenue avec notre embout sur mesure. En effet, le principe sera de comparer les niveaux de pression acoustique mesurés en fond de conduit auditif externe avec les niveaux de pression mesurés par le microphone de référence à l'entrée du pavillon avec et sans notre embout sur mesure. Nous pourrons définir plusieurs valeurs recherchées. Tout d'abord, le REUG (Real-Ear Unaided Gain) qui est la réponse en dB SPL sur l'oreille réelle sans aide auditive. Elle permet de mesurer comment l'oreille amplifie naturellement les sons. Dans un deuxième temps, nous introduirons l'appareillage éteint avec l'embout sur mesure dans l'oreille du patient afin d'effectuer une mesure du REOG (Real-Ear Occluded Gain). Cette valeur correspond à la réponse en dB SPL sur l'oreille occluse. On mesure ainsi comment le son est modifié simplement par la présence physique de l'embout ou du dôme dans l'oreille avec l'aide auditive inactive. À partir de ces deux valeurs, nous pourrons obtenir l'effet d'atténuation passive lié à l'obstruction créée par l'embout.

Effet d'occlusion = REOG – REUG

On pourra ainsi visualiser les courbes obtenues lors d'une mesure in vivo sur un patient muni d'un appareil de type écouteur déporté dont l'écouteur est placé à l'intérieur du conduit auditif avec un embout sur mesure en silicone souple 40 Shores en insertion profonde. Ces



Figure n° 3 | Matériel Aurical® Freefit de mesure in vivo de chez Natus.

valeurs d'étanchéité sont plus faibles que celles d'un embout de type bouchon anti-bruit, en grande partie à cause de la petite taille de celui-ci (Figure n° 4).

Par la suite, nous pourrons mesurer le REAR (Real-Ear Aided Response) et le REIG (Real-Ear Insertion Gain) qui seront des mesures effectuées avec l'appareillage en marche afin de pouvoir réaliser avec précision nos réglages.

Cependant plusieurs études montrent que la simple présence de la sonde peut introduire une fuite acoustique entre l'embout et le conduit auditif, entraînant une sous-estimation significative des niveaux, surtout dans les basses fréquences. Il sera donc nécessaire de créer un évent dans l'embout sur mesure afin d'y faire pénétrer la sonde. Cet évent sera rebouché entièrement une fois les mesures réalisées. Il est à noter que la fiabilité de ces mesures avec un tel matériel devient plus délicate au-delà de 6 kHz. En effet, la précision du placement de la sonde est cruciale, car une différence de quelques millimètres peut entraîner des écarts de mesure importants dans cette zone de fréquence.

Toujours grâce à cet outil, nous pourrons réaliser une mesure du MPO à

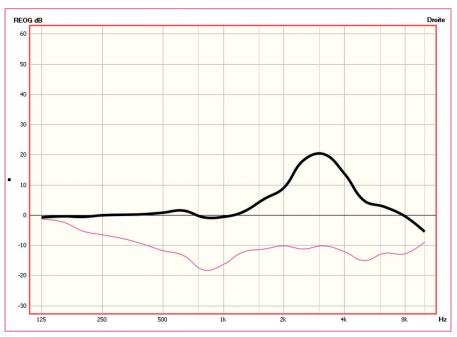


Figure n° 4 | Mesure en gras du REUG et en rouge du REOG obtenus sur un embout canule souple.

Figure n° 5 | Audiométrie tonale avec mesure du gain prothétique.

la sortie de l'écouteur. Le niveau des MPO est classiquement réglé en fonction des seuils d'inconfort du patient, ou selon certaines méthodologies d'appareillage sur la base de données statistiques. Ces valeurs ne seront pas intéressantes dans notre cas. En effet, elles pourraient se montrer peu représentatives de la tolérance sur des longues durées d'exposition et sont souvent plus élevées que les niveaux sonores dangereux pour l'oreille.

Les réglages des aides auditives

À ce jour, aucune étude ne fournit de recommandations précises concernant les réglages que le professionnel de l'audition devrait appliquer dans ces contextes. Toutefois, certaines fonctionnalités des aides auditives peuvent s'avérer particulièrement avantageuses pour les travailleurs exposés à des environnements bruyants (15). Parmi elles, on peut citer les systèmes de réduction de bruit, les options d'amélioration de l'intelligibilité de la parole, qui contribuent à un meilleur confort d'écoute, ainsi que l'utilisation d'accessoires complémentaires tels que les microphones déportés. Leur directionnalité permettra au patient de pouvoir plus facilement suivre une conversation avec son interlocuteur en fonction de sa localisation. Les réducteurs de bruit amélioreront le confort en réduisant l'effort d'écoute.

Les taux de compression devront eux aussi être adaptés à nos besoins. Il est conseillé de baisser le gain des sons forts au maximum. Le gain des sons moyens sera lui aussi baissé, mais seulement de quelques décibels. Quant aux sons faibles, ils seront fortement augmentés afin que le patient puisse continuer à converser avec ses interlocuteurs et bien percevoir les sons de faible intensité. En cas de bruit ambiant intense, nous abaisserons les curseurs du MPO pour réduire encore le gain des sons forts, mais nous veillerons à ne pas toucher les courbes des sons moyens afin de ne pas venir dégrader la compréhension à moyenne intensité. En général, il est conseillé de venir régler les MPO à 85 dB dans la mesure du possible.

Le traitement des bruits impulsionnels, qui permet de réduire les sons brefs, soudains et forts sera toujours activé, et à son niveau maximum.

Cas clinique

Prenons maintenant le cas de Madame X qui présente une perte auditive de perception légère bilatérale (Figures n° 5 et n° 6).

Elle ressent aujourd'hui beaucoup de difficultés à comprendre son entourage lorsque celui-ci parle faiblement. Ses plus grosses difficultés apparaissent lorsqu'elle se trouve dans un environnement bruyant. Le test SPIN de compréhension dans le bruit montre d'ailleurs un rapport signal sur bruit de 3 dB soit 4 dB au-dessus de la norme du test. Elle exerce un emploi dans un garage. Travaillant dans un bureau éloigné de la partie technique, elle n'est pas régulièrement exposée au bruit mais doit cependant, plusieurs fois par jour, se rendre au contact des techniciens, et donc du bruit, pour discuter avec eux. Elle souhaiterait corriger sa baisse d'audition de manière discrète et voudrait surtout ne pas devoir régulièrement, au cours de la journée, jongler entre le port des prothèses auditives et celui des bouchons.

Nous avons alors adapté deux appareils auditifs de type micro-contour d'oreille à écouteur déporté munis d'embouts courts en silicone souple 40 Shore en insertion profonde. Nous avons réalisé une mesure *in vivo* des valeurs de REUG et REOG afin de vérifier l'étanchéité des embouts (*Figure n° 5*). L'étanchéité n'est pas aussi importante que celle que l'on pourrait avoir avec un

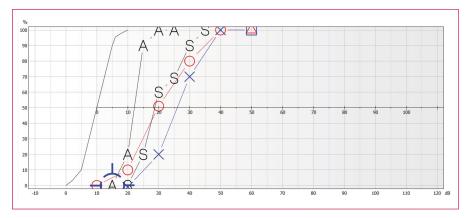


Figure n° 6 | Audiométrie vocale (liste de Fournier) au casque et en champ libre.

embout silicone totalement occlus et de type conque, mais elle sera suffisante dans notre cas d'appareillage, l'exposition n'étant pas sur une longue période et les bruits n'étant pas excessivement intenses (les dernières mesures montraient des niveaux ne dépassant pas les 90 dB). Dans un premier réglage, nous avons corrigé la perte auditive avec une compression adaptative, des réducteurs de bruit en position léger et un MPO peu atténué et calculé par rapport aux seuils d'inconfort mesurés. Nous avons obtenu un gain prothétique tonal et vocal intéressant au bout d'un mois de rééducation et un rapport signal sur bruit au test de compréhension dans le bruit passant de +3 dB à 0 dB. Nous avons réalisé un deuxième programme « Travail » accessible soit par les boutons-poussoirs des aides auditives soit par son téléphone. Nous y avons ajusté avec un fort affaiblissement les MPO et nous avons augmenté le traitement des bruits impulsionnels ainsi que les réducteurs de bruit. Une directivité importante a été mise en place

pour les microphones, les interlocuteurs étant toujours de face selon la patiente. Après plus de trois mois d'appareillage, les aides auditives sont portées plus de douze heures par jour et la patiente est très surprise et satisfaite du résultat. Elle peut aisément converser avec ses collègues même dans les zones de travail où elle était auparavant agressée par les bruits mécaniques.

À ce jour, l'utilisation des aides auditives dans des environnements professionnels bruyants reste un sujet controversé, et peu d'études scientifiques apportent des directives limpides à ce propos. Établir clairement et avec certitude les caractéristiques acoustiques de l'environnement professionnel du patient est toujours difficile, mais important, pour les professionnels de santé. Il est essentiel de développer des protocoles clairs et des méthodes de mesure fiables pour évaluer les risques potentiels et les bénéfices associés à la mise en place d'aides auditives à protection active dans ce type de situation.

Références I

- 1. Ramazzini B. (1700). De morbis artificum diatriba. Mutinae: Typis Antonii Capponi.
- 2. Ramazzini B. (1822). Traité des maladies des artisans, et de celles qui résultent des diverses professions (P. Patissier, Trad.). J.-B. Baillière.
- 3. Zhou J, Shi Z, Zhou L, Hu Y & Zhang M. Association of Occupational Noise Exposure and Extended High-Frequency Hearing Loss in Young Workers with Normal Hearing. *Ear and Hearing*. 2025;46(3):758–769. https://doi.org/10.1097/01.EEH.000000000001329
- 4. Liberman MC. Noise-Induced and Age-Related Hearing Loss: New Perspectives and Potential Therapies. F1000Res. 2017;6:927.
- 5. Trompette N, Chevret P, Chatillon J. Bruit au travail : de l'évaluation à la prévention des risques. Hygiène et Sécurité au Travail. 2019;254:1-33.
- 6. Institut national de recherche et de sécurité, INRS. 2025 Réglementation. Santé et sécurité au travail. Disponible sur https://www.inrs.fr/risques/bruit/reglementation.html (Consulté le 14 juin 2025).
- 7. Kvaløy O, Berg T & Henriksen VA. Comparison Study of Foam versus Custom Silicone Earplugs Used as Part of an Intelligent Electronic Hearing Protector System. *International Journal of Acoustics and Vibration*. 2010;15(4), 258-265. Disponible sur iiav.org
- 8. PRODWAYS. (2025) earow-audio. Protection auditive Bruit. Disponible sur https://www.earow-audio.fr/protections-auditives/bruit/ (Consulté le 14 juin 2025).
- 9. Deshaies P, Martin R, Belzile D, et al. Noise as an Explanatory Factor in Work-Related Fatality Reports. Noise Health. 2015;17(78):294-9.
- 10. Girard SA, Picard M, Davis AC, et al. Multiple Work-Related Accidents: Tracing the Role of Hearing Status and Noise Exposure. Occup Environ Med. 2009;66(5):319-24.
- 11. Girard SA, Leroux T, Courteau M, et al. Occupational Noise Exposure and Noise-Induced Hearing Loss are Associated with Work-Related Injuries Leading to Admission to Hospital. *Inj Prev.* 2015 Apr;21(e1):e88-92.

- 12. Ghent R. Protecting the Hearing-Impaired. *Industrial Safety & Hygiene News*. January 2, 2014. http://www.ishn.com/articles/print/97660-protecting-the-hearing-impaired (Consulté le 14 juin 2025).
 13. Leroux N, Laroche C, Giguère C, Voix J. *Hearing Aid Use in Noisy Workplace*. IRSST R-1015; 2018
 14. Kuk F, Keenan D. Fitting Tips: How Do Vents Affect Hearing Aid Performance? *The Hearing Review*. Feb 2, 2006.
 15. Malrin A, Ducourneau J, Chevret P. Characterization and Prediction of Speech Intelligibility at the Output of Hearing Aids in a Noisy Working Environment. *Noise Health*. 2023;25(118):183-194.

